
Verified Differential Privacy for Finite Computers
Arthur Azevedo de Amorim

arthuraa@bu.edu
Boston University

Boston, Massachusetts, USA

Marco Gaboardi
gaboardi@bu.edu
Boston University

Boston, Massachusetts, USA

Vivien Rindisbacher
vrindis@bu.edu
Boston University

Boston, Massachusetts, USA

Abstract
Differential Privacy not only ensures the anonymity of data,
but provides a way of rigorously quantifying and proving
how private released information is. A drawback of Differ-
ential Privacy is that most suggested implementations are
formalized using real numbers. This makes Differentially
Private algorithms unimplementable on finite machines. A
common way to get around this issue is to implement these
algorithms using floating point numbers. However, as shown
by Ilya Morinov, these naive implementations lead to privacy
breaches using an attack on the least significant bits of the
floating point numbers. Therefore, finding ways to verify
implementations of Differential Privacy is of significant in-
terest to many. Using Coq, we have formalized a version of
the Geometric Truncated Mechanism (GTM), first suggest by
Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan
using fixed precision arithmetic, and verified that the GTM
is in fact Differentially Private.

1 Introduction
Differential Privacy is difficult to implement because of its
reliance on probability distributions, which are often con-
tinuous. A reasonable solution to this issue, sampling from
discrete distributions can lead to slight differences between
the underlying probability mass function (PMF) and the im-
plemented random sampling routine. Ghosh et al. proposed
to solve this issue with the Geometric Truncated Mechanism,
which blurs the result of a query using noise drawn from a
discrete geometric distribution and then truncates the result.
However, to date, an implementation sampling from this
distribution has not been verified.

Following the implementation suggested by Victor Balcer
and Salil Vadhan, we have formalized a sampling routine
for the GTM in Coq, using fixed precision arithmetic. First,
we give an overview of the GTM itself. Then, in Section 3
we describe the inverse transform sampling routine used to
sample the underlying distribution. Sections 4 and 5 give a
brief overview of the tools used to model probability distri-
butions and the implementation of the GTM. In Section 6,
we show how picking an arbitrary size for the uniform dis-
tribution used in the inverse transform sampling routine has
consequences on the privacy guarantee of the GTM. Finally,
in Section 7 we show how choosing specific parameters for

POPL ’23, Jan 15 - 21, 2023, Boston, MA
.

the GTM preserves the privacy guarantee achieved by the
PMF. All of the theorems stated in the following sections
have been formalized in Coq.

2 Geometric Truncated Mechanism
The Geometric Truncated Mechanism provides a framework
for Differential Privacy using rational numbers. The goal
of the GTM is to sanitize the result of a query 𝑞. Suppose
that 𝑞 is always bounded to some integer interval [0, 𝑛] (e.g.,
𝑞 counts how many entries in a database satisfy a given
predicate). Using 𝑞, the GTM produces a sample from the
following probability distribution:

𝑔𝑡𝑝𝑚𝑓 (𝑞, 𝑜𝑢𝑡𝑝𝑢𝑡) =

0 if 𝑜𝑢𝑡𝑝𝑢𝑡 > 𝑛
𝛼𝑞

1+𝛼 if 𝑜𝑢𝑡𝑝𝑢𝑡 = 0
𝛼 (𝑛−𝑞)

1+𝛼 if 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑛
1−𝛼
1+𝛼 𝛼

|𝑜𝑢𝑡𝑝𝑢𝑡−𝑞 | otherwise.

The formal definition of Differential Privacy generally in-
volves somemechanism 𝑓 which takes as input a query result
𝑞 from a database 𝐷1, and returns 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 (𝑞). The un-
derlying probability distribution used is generally quantified
over 𝜖 which controls the amount of noise added to 𝑞 and
the privacy guaranteed by the mechanism. We can show that
the GTM is 𝛼 Differentially Private. By definition, this means
that, for every pair of neighboring results |𝑞 − 𝑞′ | ≤ 1, we
have the following:

𝛼 ≤ 𝑔𝑡𝑝𝑚𝑓 (𝑞, 𝑜𝑢𝑡𝑝𝑢𝑡)
𝑔𝑡𝑝𝑚𝑓 (𝑞′, 𝑜𝑢𝑡𝑝𝑢𝑡) ≤ 1

𝛼

Intuitively, if we think of 𝑞 as the result of a counting query,
as explained above, this means that the probabilities of out-
puts cannot change much when we run the query after mod-
ifying the data of one individual.

3 Inverse Transform Sampling
The GTM is implemented by sampling a random variable
from the underlying PMF using inverse transform sampling.
Inverse transform sampling samples a number 𝑝 from a uni-
form distribution over (0, 1] and finds the first member of the
cumulative mass function (CMF) greater or equal to 𝑝 . The
result is a possibly identical distribution to the GTM’s PMF.
Sampling from a continuous uniform distribution has the
drawback of truncation for the sampled value 𝑝 . Thus, we
use a discrete uniform distribution of size 𝑇 , each member
with probability 1

𝑇
.

POPL ’23, Jan 15 - 21, 2023, Boston, MA Arthur Azevedo de Amorim, Marco Gaboardi, and Vivien Rindisbacher

4 Finprob
In order to implement the inverse transform sampling rou-
tine, we use the Finprob library1. Finprob formalizes finite
probability theory using Extructures2, a library which im-
plements finite maps. A distribution (𝐷𝑖𝑠𝑡𝑟) is defined as a
function 𝑓 operating over some non-empty set 𝑋 , where
𝑓 𝑥 ≥ 0 for 𝑥 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑓 . The function𝑚𝑘𝑑𝑖𝑠𝑡𝑟 is used to
instantiate a distribution using a sub-proof that the given
set 𝑋 and the corresponding function 𝑓 satisfy the require-
ment for 𝐷𝑖𝑠𝑡𝑟 . The function𝑚𝑘𝑝𝑟𝑜𝑏 is used to instantiate
a probability distribution, which is a 𝐷𝑖𝑠𝑡𝑟 whose𝑚𝑎𝑠𝑠 is
exactly 1.𝑚𝑎𝑠𝑠 is defined as the sum of 𝑓 𝑥 for 𝑥 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑓 .

An important class of probability distribution for our use case
is the uniform distribution. This is instantiated using 𝑢𝑛𝑖 𝑓 ,
which creates a probability distribution using𝑚𝑘𝑝𝑟𝑜𝑏 and
where 𝑓 is a function that returns 1

𝑇
. 𝑇 is the size of the set

X. Finally, 𝑠𝑎𝑚𝑝𝑙𝑒 provides a mechanism for sampling from
a probability distribution. Conceptually, 𝑠𝑎𝑚𝑝𝑙𝑒 samples a
value from its first argument (a probability distribution) and
uses it to compute another distribution.

5 Implementation
To implement the GTM, we use 𝑢𝑛𝑖 𝑓 and 𝑠𝑎𝑚𝑝𝑙𝑒 . First, we
generate the support for the discrete uniform distribution
of size 𝑇 . Then, we create a probability distribution with a
proof that the support of the distribution is not empty.

Definition discrete_uniform_supp : {fset rat} :=
fset (map (fun x => x / T) (iota 1 T)).

Definition UniformDistribution :=
unif discrete_uniform_supp_is_not_empty.

Finally, we define the GTM itself, using the inverse transform
sampling routine described above. The output 𝑑𝑖𝑟𝑎𝑐 is a
deterministic probability function which gives the sanitized
result 𝑜𝑢𝑡𝑝𝑢𝑡 .

Definition gtm (q : nat) :=
sample:
u <- (UniformDistribution T size_unif_nonzero);
dirac(find (fun x => u <= x)

(geometric_truncated_cdf_vector q)).

The GTM has support [0, 𝑛] when the size of the uniform dis-
tribution𝑇 ≥ 1+𝛼

(1−𝛼)𝛼𝑛 , the inverse of a value slightly smaller
than any probability returned by the PMF. This allows every
possible 𝑜𝑢𝑡𝑝𝑢𝑡 ∈ [0, 𝑛] to be sampled.

6 𝛼′ Differential Privacy
Consider a naive implementation of the GTM outlined above,
where 𝑇 is chosen arbitrarily. In this case, the GTM and the

1https://github.com/arthuraa/finprob
2https://github.com/arthuraa/extructures

PMF do not necessarily have identical probability distribu-
tions. Therefore, we cannot guarantee the following:

𝛼 ≤ 𝑃𝑟 [𝑔𝑡𝑚(𝑞) = 𝑜𝑢𝑡𝑝𝑢𝑡]
𝑃𝑟 [𝑔𝑡𝑚(𝑞′) = 𝑜𝑢𝑡𝑝𝑢𝑡] ≤ 1

𝛼

To find the correct privacy bound for this naive implementa-
tion, we can use a convenient lemma describing the proba-
bilistic distance of the PMF and the GTM.

Theorem6.1. ∀𝑜𝑢𝑡𝑝𝑢𝑡 ,𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 𝑛, let 𝑖𝑑𝑒𝑎𝑙 = 𝑔𝑡𝑝𝑚𝑓 (𝑞, 𝑜𝑢𝑡𝑝𝑢𝑡)
and𝑚𝑒𝑐ℎ = 𝑔𝑡𝑚(𝑞, 𝑜𝑢𝑡𝑝𝑢𝑡). We have𝑚𝑒𝑐ℎ ≤ 𝑖𝑑𝑒𝑎𝑙 ≤ 𝑚𝑒𝑐ℎ+
1
𝑇
∨ 𝑖𝑑𝑒𝑎𝑙 ≤ 𝑚𝑒𝑐ℎ ≤ 𝑖𝑑𝑒𝑎𝑙 + 1

𝑇
.

Here, 𝑔𝑡𝑚(𝑞, 𝑜𝑢𝑡𝑝𝑢𝑡) is the same as 𝑃𝑟 [𝑔𝑡𝑚(𝑞) = 𝑜𝑢𝑡𝑝𝑢𝑡].
Naturally, this bound has an interesting consequence on
the expected privacy of the GTM. In order to find a privacy
bound we can guarantee, we need only consider the worst
case of the bound above. There may be a situation in which
𝑔𝑡𝑚(𝑞, 𝑜𝑢𝑡𝑝𝑢𝑡) = 𝑔𝑡𝑝𝑚𝑓 (𝑞, 𝑜𝑢𝑡𝑝𝑢𝑡)+ 1

𝑇
and𝑔𝑡𝑚(𝑞′, 𝑜𝑢𝑡𝑝𝑢𝑡) =

𝑔𝑡𝑝𝑚𝑓 (𝑞′, 𝑜𝑢𝑡𝑝𝑢𝑡) − 1
𝑇
. Thus, the GTM will be Differentially

Private to some degree of

𝑔𝑡𝑝𝑚𝑓 (𝑞, 𝑜𝑢𝑡𝑝𝑢𝑡) − 1
𝑇

𝑔𝑡𝑝𝑚𝑓 (𝑞′, 𝑜𝑢𝑡𝑝𝑢𝑡) + 1
𝑇

By inspecting the probabilities for neighboring queries, we
can find some constant 𝛼 ′, which is Differentially Private for
the naively implemented mechanism.

Theorem 6.2. ∀𝑜𝑢𝑡𝑝𝑢𝑡, 𝑛, 𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 𝑛, let 𝐷 = 1−𝛼
1+𝛼 𝛼

𝑛 and
𝐷 ′ = 1−𝛼

1+𝛼 𝛼
𝑛−1. 𝛼 ′ = 𝐷−𝑇 −1

𝐷 ′+𝑇 −1 → 𝛼 ′ ≤ 𝑔𝑡𝑚 (𝑞,𝑜𝑢𝑡𝑝𝑢𝑡)
𝑔𝑡𝑚 (𝑞′,𝑜𝑢𝑡𝑝𝑢𝑡) ≤ 1

𝛼 ′ .

7 𝛼 Differential Privacy
Although the privacy loss of 𝛼 ′ Differential Privacy is not
drastic, we would still like to achieve the same bound as
that of the PMF. We can prevent the privacy degradation
quantified by 𝛼 ′ Differential Privacy by tweaking the size
of the uniform distribution 𝑇 . Inspecting the probabilities
returned by inverse sampling, we can see that they are all of
the form 𝑥

𝑇
. Thus, if we ensure that all probabilities of the

true GTM are of this form, we can guarantee that they can
be represented exactly by inverse sampling. This is stated
formally in theorem 7.1.

Theorem 7.1. Choose some 𝐷 ∈ 𝑁 such that 𝐷 > 2. Then
intialize 𝛼 = 1

𝐷
. Inverse transform sampling with a uniform

distribution of size 𝑇 = (𝐷 + 1)𝐷𝑛 , preserves 𝛼 Differential
Privacy.

8 Conclusion and Future Work
When formalized correctly, the Geometric Truncated Mech-
anism allows for an implementation of Differential Privacy
on a finite machine. However, our implementation cannot be
run as a normal probabilistic program. As future work, we

Verified Differential Privacy for Finite Computers POPL ’23, Jan 15 - 21, 2023, Boston, MA

plan to verify an executable version of the GTM. One possibil-
ity would be to write a C implemtation of the GTM and verify
it using the Verified Software Toolchain. Another potential
direction would be to verify the constant time implementa-
tion of the Geometric Truncated Mechanism, proposed by
Balcer et al.

References
[1] Victor Balcer and Salil P. Vadhan. 2019. Differential Privacy on Finite

Computers. J. Priv. Confidentiality 9, 2 (2019). https://doi.org/10.29012/

jpc.679
[2] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2012.

Universally Utility-maximizing Privacy Mechanisms. SIAM J. Comput.
41, 6 (2012), 1673–1693. https://doi.org/10.1137/09076828X

[3] Ilya Mironov. 2012. On significance of the least significant bits for
differential privacy. In the ACM Conference on Computer and Com-
munications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012,
Ting Yu, George Danezis, and Virgil D. Gligor (Eds.). ACM, 650–661.
https://doi.org/10.1145/2382196.2382264

https://doi.org/10.29012/jpc.679
https://doi.org/10.29012/jpc.679
https://doi.org/10.1137/09076828X
https://doi.org/10.1145/2382196.2382264

	Abstract
	1 Introduction
	2 Geometric Truncated Mechanism
	3 Inverse Transform Sampling
	4 Finprob
	5 Implementation
	6 ' Differential Privacy
	7 Differential Privacy
	8 Conclusion and Future Work
	References

