An Introduction to PyBT

Vivien Rindisbacher

April 2023

1 Links
e PyPI
e (Github

2 Introduction

Unit Testing, Test Driven Development, Acceptance Testing, End to End Test-
ing, Integration Testing...

These days, there are so many methods proposed for testing code it is surprising
that writing correct code remains so difficult. In this introduction to PyBT, a
library for property-based testing in Python, I introduce the common flaw of
many testing methodologies and show how property-based testing circumvents
the issue.

3 How We Write Code

Programming is hard. This property stems from a simple phenomenon - pro-
gramming is abstract. Here is a simple example that illustrates the problem.

Write me a program that sorts a list of integers, floats, and booleans.

Of course, it is not difficult to imagine what it means to sort a list. How-
ever, when writing such a program, one will never deal with this problem by
thinking of some abstract list. Instead, one will think of a series of examples
helpful in creating such a program. For example...

[1’ 2, 5: 4] -> [1: 2’ 4: 5]
[1.5, 3.2, 2.3, 6.5, 5.3] —> [1.5, 2.3, 3.2, 5.3, 6.5]
[True, False, True, True] -> [False, True, True, True]

https://pypi.org/project/python-property-based-testing/
https://pypi.org/project/python-property-based-testing/
https://github.com/vrindisbacher/python-property-based-testing

There is nothing inherently wrong with programming this way. In fact, it would
be very difficult to reason about any program without examples. However, our
reasoning creates a pseudo-tautology when it comes to testing.

4 Why Does Abstraction Matter

The programmer wrote code by reasoning over some examples. The common
approach to testing would be the same! Encode some possibilities for [and
sort_list(l), and assert that they match.

Clearly, our test cases will be similar to the cases used in writing the func-
tion in the first place. This is bad.

One might think that programmers need only challenge themselves in writ-
ing tests, by thinking of edge cases or complex examples that make their code
fail. There are two unfortunate issues with this idea.

First, the universe of possible inputs is infinite, and therefore there is no way
one would find all the examples that cause their code to fail. Second, thinking
of these examples, reasoning about the correct output, and encoding them is
immensely time-consuming.

5 Testing Abstractly

We have established that programs are abstract. Therefore, a natural next step
is to test code abstractly. Enter property-based testing.

A good question to ask at this point is, If I had to prove that sort_list is correct,
what would I actually be proving?. Theoretically, we need a universally quanti-
fied proposition, which is a statement of correctness for sort_list. In layman’s
terms, we need to find a property that describes what it means for sort_list to
be correct. Here is a proposal...

Theorem sort_correct: ¥ 11i j, sorted = sort_list(l) — i < size(l) = j < i — sorted[j] < sorted]]

This reads: for all I, i, and j, if sorted is the result of calling sort_list on I, i is
less than the size of I, and j is less than i, then the element at index j of sorted
will be less than or equal to the element at index i of sorted.

This is not too bad! Of course, if every element to the left of some element
a is less than a, then the list is sorted. If we could test this property, over many
[, we would be in a much better place.

One challenge is imagining how this proposition could be encoded in a pro-
gramming language like Python. However, if we could do this, then we would
be able to generate as many test cases (short of infinite) as we want and see if
the proposition or property holds. Here is a proposed way of encoding this.

def sort_list_test(l : list[int] | list[float] | list[bool]l):
sorted = sort_list (1)
for i in range(len(sorted)):
for j in range(i):
assert (sorted[j] <= sorted[il)

This function matches our proposition exactly. Specifically, our parameter is our
universally quantified variable list [. We then encode that all indexes ¢ and j
are such that j < ¢ and i < size(l). Finally, we assert that sorted[j] < sorted]i].

Now, if we generated 10000 random test cases for sort_list_test, we would have
high assurance that our function is correct. This is exactly what property-based
testing does.

6 PyBT

It is not too difficult to encode our properties as functions. However, we still
need to generate random inputs based on the types of our function arguments.
This is what PyBT does.

6.1 Main Functionality

The library provides a decorator named pybt. The arguments to this decorator
are...

e n: the number of tests to run (defaults to 1000).

e generators: user-provided generators to be used to generate function ar-
guments (defaults to None).

e hypotheses: hypotheses that generated arguments are constrained by.

e max_basic_arg_size: maximum size of string, ints, floats, etc.

e maz_compler_arg_size: maximum size to use for complex structures like
list an dict. Also applies to the depth of random types generated by any.

6.2 Types Supported

PyBT supports basic types, union types, and nested types. It supports list,
dict, int, str, float, bool. It also supports any, which will generate a random
type, and, subsequently, arguments of that type. The types generated by any
are constrained to list, dict, int, str, float, and bool.

There are plans to add random generation of classes and callables in the fu-
ture. It is always possible to test functions with types not supported by PyBT.
To do this, one needs only use custom generators. You can see an example
below, in the section Generators.

6.3 Usage

Let’s use our sort_list example from above.

from pybt.core.core import pybt
from unittest import TestCase

class TestSorted(TestCase):
pybt_small = pybt(max_complex_arg_size=5, max_basic_arg_size=10000)

Opybt_small
def sort_list_test(self, 1 : list[int] | list[float] | list[bool]):
sorted = sort_list (1)
for i in range(len(sorted)):
for j in range(i):
assert (sorted[j] <= sorted[i])

First, we import the pybt decorator from PyBT and the TestCase class from
the unittest module. Then, we declare our tests in a way that is standard in
Python (using unittest). The caveat here is that our test is a property and that
we have added the decorator pybt_small. The unittest framework will pick up
sort_list_test, and we will be able to run it from our IDE. When run, pybt_small
will generate 1000 random inputs to test this property.

6.4 Hypotheses

If you need to constrain the arguments that are passed to your function, you
can constrain them using hypotheses. For example, if we wanted every single
integer that appeared in 1 to be less than 2 for sort_list, we would specify that
in the following way:

def constrain_1(1 : list):
for el in 1:
if type(el) == int:
if el > 2:
return False
return True

hypotheses = {
"1" : lambda 1 : constrain_1(1)

pybt_small = pybt(max_complex_arg_size=5, max_basic_arg_size=10000, hypotheses=hypotheses)

6.5 Generators

If you have arguments that should be generated in a very specific way, then
you can provide your own generators, through the generators argument. For
example, let’s say we only wanted our sort_list function to run on lists of ints
that are coerced to strings. We could do so in the following way.

import random

def gen_1(0):
1=1]
for _ in range(5):
el = random.randint (1000)
1.append(str(el))
return 1

generators = {
"1" : gen_1
¥

pybt_small = pybt(max_complex_arg_size=5, max_basic_arg_size=1000, generators=generators)

7 Beware

It is very important that the property used matches the code it is intended for.
To clarify what is meant by this, consider this example of sort_list.

def sort_list(l):
return []

Here, the property we used before will obviously hold true, but this is not sorting
a list. There are all sorts of gotcha’s that can happen when coming up with
a specification. Thus, it is important that you think very carefully about the
property you use.

8 Conclusion

Property-based testing presents a shift from writing to test cases, to reasoning
(abstractly) about what correctness means. Property-based testing is not a
replacement for any testing methodology, but it does work in conjunction with
most. For example, test-driven development using property-based testing would
be an extremely powerful tool.

	Links
	Introduction
	How We Write Code
	Why Does Abstraction Matter
	Testing Abstractly
	PyBT
	Main Functionality
	Types Supported
	Usage
	Hypotheses
	Generators

	Beware
	Conclusion

